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WELL-POSED CAUCHY PROBLEMS

Heinz-Otto Kreiss

1. INTRODUCTION
/109

In this paper we shall consider system of partial differential

equations of the type

:asat= P(t, a/ax)u = I Pj(t, ala), (1.1)
j-0o

and shall investigate the question as to when the Cauchy problem

is well-posed in an interval O t-9T, T>Oj . Here z=(xz,...,z)'

denote points in the real s-dimensional space R and.u=(u(z,t),...U,(X,,t))

are function vectors in the comilex n-dimensional space S and

P,(t,a/ax)u = I A,(t) alilulaz~x ... a1.
Itl-i (1.2)

' = (v, .... ), Ivl = ,

are homogeneous differential operators of order j whose coeffi-

cients are continuous square matrices which depend on t. (y" de-m.: "

notes the transpose of the vector y.)

Furthermore, in the last section of this paper we shall apply

the results obtained to the investigation of first order systems

whose coefficients depend on x also. By so doing we are able

to obtain "a priori" inequalities which provide a means of

generalizing the results of Leray [51 and Petrovskii [7].

* Numbers in margin indicate pagination in original foreign
text.
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This paper depends essentially upon a previous paper of the

I-
author [4], and we assume -fami1iarity with it.- ...

2. DEFINITION OF APPROPRIATENESS

The well-posedess 1 of the] Cauchy problem for the system

(1.1) has already been studied intensively by Petrovskii [8].

In that paper.he defines wel l-posedness in the sense of

Hadamard [3] essentially as follows: there exists a constant C

and a natural number p such that for all tl, t2 where---

0<t 1 itT/, the estimate

S sup lu(x,t)l C 0 O sup l 'U(X, t) VX, . .. axex,'
zeAR . . o r-i oR -(2.1)

/110
where jujl12=lu 11 holds for the solutions of (1.1) Here all

functions are admissible as boundary values for the system (1.1)i

Tt an arbitrary time t.: which; are'differentiable sufficientl ly

often, are bounded together with their derivatives, and for which

a solution of the Cauchy problem exists. If we let

P(tiw) = .Pj(t,iwj), P(t,iw) = A,(t)(i )"...(is,)",
i-o . -i (2.2)

then Petrovskii proves the following criterion:

The Cauchy problem (1.1) with constant coefficients is

well-posed in+the sense of Hadamard if and onl " if there are

constants C. such that the inequality

Rex() - Clogl1+lIow+CO' (2.3)

holds for the eigenvalues ;(w) of P(i)" . (L. Garding [2] proved

subsequently that one can set C1 = 0).
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In general this criterion ho longer holds when the

coefficients of the differentiall operator depend--on--t-.- In fact one

can present systems (1.1) which are not well-posed 9 in the

sense of Hadamard, even though (ic.3 Tholds for every te(0,T). r

Suchia system is

U(t -x1 ( -cost sint (2.4)

Obviously (2.3) is satisfied for every t. If we now introduce
-1v = U u as a new variable we obtain

av 1 1a v U 1 au 0-
t 0  1 at (0 1. -- 10 (2.51(2.5)

Since U is an orthogonal matrix, the Cauchy problem (2.4) is

wel-pos d- precisely when (2.5) is . .il-posed._) But (2.5) is a

-system with constant coefficien-ts-.- Therefore we can apply the-

criterion (2.3). Now

11 0)i
and for the eigenvalues we have;

X(w) = i - (I +ic)=,

The inequality (2.3) is therefore not satisfied and thus the

Cauchy problem~ (2.,) is not ....wel1-posed_. (Note _that correspond-

ing considerations hold if one replaces the variable t in U (t)

by x). Hence in order to obtain an algebraic criterion which

also holds - under suitable continuity assumptions - for

coefficients which depend on t, it is necessary to alter the /111

definition of welT-po edness _
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-We-now deifine what it is that we wish to underst-and--by ,_

we 11 osed _Cau-chy problem in this paper. Let L be the Hilbert

space of all n-dimensional vector functions u(x), v(x), ... in

R whose abs olot e-sq-uare-i-s-~n-teg-rable-and-who.s.en.orm and scalar

product are defined as usual by

(U.,v)= f -*vdx= . •v' (2.6)

Furthermore we denote by 1=cL the class of all vector
I-I

functions f(x) whose Fourier transforms

P(w2o) = (2 i)-'I/ f e f(x) dx, . = (o,..,,) ea (2. 7)

exist, which are piecewise contlinuous, and -which vanish outside

of a compact set cR'I(independent of f). Here R' denotes the

real s-dimensional space of the variables iw=((i,...w.,). For the

_Cauchy problem (1.1) we admit as initial values at arbitrary

time t E(O,T) all functions f(x) which lie in '). If one

applies the Fourier transform t the system (1.1o), then by

virtue of (2.7) one obtains

V(o,t) - (27)-"81  e--"u(x,t)d.

dV(co,t) dt = P(t,iow)V(o,t), V'(o,t,) = qc(wo) (2.8)

If one solves these systems of ordinary differential

equations, the'n for each initial value distribution f(z) e

one obtains a solution

U(x, t) = (2a)-8/2f ew (cot) dO, I ,, (2.9)

of the Cauchy problem (1.1) whilch belongs to the set lJI for

.,each..fixed.t. _and which is continuous with respect to t

and infinitely differentiable with respect to x. We now

define:
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DEFINITION 1. The Cauchy problem is well-posed /if there is

a constant C such that for all (t, t2 where 0--tt TL , and for

all solutions (2.9\the inequality

.lu(Xz, t)II 5 C IIu(x,t)Ij (2.10)

holds.

The inequality (2.10) is the decisive requirement for _wel-

piosedness.- - Indeed since; 1 is dense in L 2 one can admit all
22

functions of L 2 as initial values if one introduces generalized

solutions in the usual manner. For these solutions (2.10) then

holds also. /112

3. CONDITIONS FOR THE SOLUTIONS OF THE DIFFERENTIAL EQUATIONS.

(2.8).

We shall now state necessary and sufficient conditions which '

the solutions of the differential equations (2.8) must satisfy iI

order for the Cauchy problem to be well-posed We prove

THEOREM 1. The Cauchy problem (1.1) is well-posed- if and

only if there is a constant D>0 1such that for all w, for all tl,'t 2

with O:5 1 t,2 -T , and for all solutions of (2.8) the inequality

I A-
.](w,t)l _- Dr(o ,t, )lj (3.1)

holds.

PROOF. If (3.1) holds then it obviously follows from

Parseval's equation that the Cauchy problem is- el-posed. ) That

thco-dnlt ift- (3.1) is also necessary is proved as follows.

,Assume that (3.1) does not holdi Then there exist sequences
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a, t;,, ,\ and y(w,,t,.) with O<ts,<t,T/ such that

1(t(w.,) k vY(w,,t1,)I, = 1,2, .... (3.2)

Since the solutions of the differential equations (2.8) depend

continuously on w. and on the initial values there exists a 61,>,0I

such that for all w with ijow-4,16,) the following inequality holds.

'(w,t,)l VV(Wv[(O,t1 ,)! provided that I((,t,) = V(0, 1, ) ( .33

If we now let

j for 1c-0,1 >

be initial values for a solution ',(x,t) of the form (2.9) for the

Cauchy problem.at time ,titI , then

Ih(, 4)11 IIUX(1,t1)ll. l

follows from (3.3) and Parseval's equation. Thus (2.10) is not

satisfied, and the Cauchy problem is therefore not: well-posed.

4. SYSTEMS (1.1) WITH CONSTANT COEFFICIENTS

We now consider systems (1.1) with constant coefficients and

we shall state a necessary and sufficient algebraic criterion for
the wel-l--pose-dnes- of the Cauchy problem. First note that one can

write the solutions of the systems of ordinary differential

equations (2.8) in the form

(4.1)

Hence from Theorem 1 follows immediately
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THEOREM 2. The Cauchy problem (1.1) with constant

coefficients is well-posed- if and only if there exists a

constant D>O such that for all '

/eA-J'YI; D, o_0 .16 (4.2)

( AI is the ,Eclidean norm of the matrix A, i.e.,j A=supAx /Ixj.)

If the ifinequality (4.2) holds, we can write it in a somewhat

different form. If we let (logD)/T = a, it then follows that

le cI )T_; eaT.

Hence for O0t<oowe have

lePYW)l .5 De,% ,/
and for the family ; F'of matrices P(io)-&II we have

leS l D, O t< oo. (14.3)

Therefore, we can apply the main theorem of [16] to the family -',

This theorem provides necessary and sufficient criteria which the

family must satisfy in order that (4.3) shall hold. We obtain

THEOREM 3. The following statements are equivalent:

L) The Cauchy problem (1.1) with constant coefficients is

wel -p.osed. ;

2) There exist real constants C31, C anda , and to each-- :-32
matrix P(i ) there corresponds a matrix S - S(w) satisfying

max (,8-,j18 ) ;5 Caj (4. 4)

so that

7



B = s(P(iw) -al)S-'

S- x b , .. ... b,

hold.

3) There exist real constants C4 and a, and corresponding

to each matrix P(iw) there exists a positive definite hermitian

matrix H(w) for which

max(H,IH-'1) C4,5 tiat isj 04-iIj H C4 I (4.7) /114

soand that-

H(Re)(P(iw) -al) + (P*(iw)- )H() i (4. 8)

Furthermore it should be nsted that according to section

4 of [4] one can construct the matrices H(w) with the help of the

matrices S(w). In fact one can assume H in the form

H = S*DS (4.9)

where D is a suitable positive definite diagonal matrix

independent of which

We now wish to formulate the third statement of the last

theorem in another way. For this purpose we introduce

* Denotes the adjoint matrix 'of A
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DEFINITION 2. The differential operator l(a/lax)\ is semi-

bounded with respect to a norm (u,Hu) if

1) H is a linear bounded positive definite symmetric

operator in L2 which is defined everywhere, and

2) There exists a constant a such that for all _(x)E

(P(alaxz)u,Hu)+(u, HP(a/ax)u) = 2 Re(P(/alaz)u, Hu)
5 2x(u,Hu).

Note th-a Je norm (u, Hu) -s equivant t tthe L -norm.
2.

We now prove

THEOREM 3. The Cauchy problem (1.1) with constant coefficients

is well-posed .if and only if P.(a/ax) - is semi-bounded with respect

r;to a norm- (u-,--Hw) .

PROOF. Let the Cauchy problem bew - Then it

follows from the proof of the main theorem of [4] (cf., Section_

that one can assume that the matrices S(w) - and therefore by

(4.9) the matrices H(w) of the previous theorem - are piecewise

continuous functions of w. Indeed one can write S(w) in the

form (.S(w) - S1 (w) U (w) where U (w) is any unitary matrix which

transforms P(iw) into triangular form (Schur's normal form),

and the coefficients of S1 (w) are fractional rational functions

of the coefficients of U(w)P(iw)U*(o)]. Hence by means of /115

Hu =fe1tH()V(wco) do, U (2)-0 e' feo.(w) dc

we can define a'linear bounded hnd positive definite symmetric

operator H in L2 for which the inequality

0C-1jjus 2 5 (u,Hu)= y*(w) H(w)C) d 04 uJJ'*1

holds by virtue 6 f-(4-.'7) dan'Paieval's equation. From the

inequality (4.8) it then follows that for all U(z)e T,\



(P(/ax)u, Hu) + (u, HP(alaz)u) .(4.11)

f (P*(i)H(w)+ H(w)P(io))V do

6 2a f V*H(co)o dco

= 2,(u,Hu). -

Conversely if P(0a1x)l is semi-bounded with respect to a

norm (u,.Hu) then

1(,H u)lat = (aulat,Hu) + (u,Halat)
= (P (a/ax)u,Hu) -+ (u, HP(a/la)u)
;5 2a(u,Hu):. (4.12)

holds for all solutions of the Cauchy problem of the form (2.9)

which belong to the set IAr for each fixed t. Since the norm

(u, Hu) is equivalent to the L2'-norm,\the inequality (2.10) follows

from (4.12). Thus the Cauchy; problem is well -posed.---_

5. SYSTEMS (1.1) WITH COEFFICIENTS WHICH DEPEnD)ON t.

We shall now show that the two criteria of the last

theorem hold in the main for coefficients which depeid on t.

We prove

THEOREM 4. Assume that the second or third statement of

theorem 3 holds for all fixed te(O,T)j where the constants C3i

and a or C4 and a are independent of t. Then the Cauchy problem.

(1.1) is well-posed (if the matrices S(t,w) or H(t,w) are contin-

uously differentiable with respect to t for each fixed w, and

there is a constant K independent of t and a so that as/atKI <  or

H/10t 5KI)
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.---PROOF. If the second statement of Theorem 3 holds for

constants-C -a and if S(t,w) 1_ continuously differentiable, then

it follows from section 4 of [3 1, applied to the family I  /116

of matrices P(t,iw) ---aI,w real and e(,T) that there is a

constant positive definite diagonal matrix D such that the matrices

H = S*DS

have the properties assumed in the theorem. Hence, we only need

to prove the theorem for the case in which there are such matrices

H(t, I)). If we now consider thej ordinary differential equations

(2.8) it follows from (4.7) and (4.8) that

dV*HyIdt = V*(HP + P*H)p + V*(aHfat)V

5 (2a( + C4K)p*Hp (5. 1)

Thus the inequality (3.1) is satisfied, and therefore by

Theorem 1, the Cauchy problem is ,well-posed, 7

6. EXAMPLES OFWELL-_0sD CAUCHY PROBLEMS

We shall now mention some examples of;we I -posed QCauchy

problems.

1) Parabolic Systems (cf.Petrovskii [8]).

If m O (mod 2) and if there is a constant,:6>.j such that for

all w, t the inequality

Rex,(o) < -261o m+-1j (6.1)

holds for the eigenvalues j(c)] of P(t, iw), then the Cauchy

problem (1.1) is well-posed. .' Indeed we can construct matrices

H(t,~s) ih'tYthe following way: if toe(0T) is any fixed- vIue-of-t

then the Cauchy problem for the system

11



uj. t =P(tofaa) = ( Ix,2) .+P(to, a/x)u (6. 2)

is well1-posed. There is in fact for 101o01 a unitary transformation

U(w), such that the ordering condition (4.5) is satisfied and

U(pl)(to,iCo)U*(w) =U(w)P(to,iO)U*(W) + dw-mI

S " .. Lx +61 . b+ 2 s........., bl
O xs+6wlom ba2 ... b2,

.. .. .. + (6.3) /117

According to (6.1) the inequality

Re(,cj+lwlim) - llwm

holds for sufficiently large Iwi:. Since the :bi,/(Icla+1)) are

bounded it follows that the inequalities (4 .6) are also satisfied

for a suitable value a. Therefore, by Theorem 3 the Cauchy

problem for (6.2) is well-posed. t and there are constants C and

a and matrices H(to,) which satisfy the inequalities (4.7) so that

-H(to, o)P(to, iw) + P*(to, iv)H(to, o)

= H(to,w)P(to, ic)+P*(to,iw)H(to, co) +26jlmH(to,co) 6.4 )
N 2ccH(to, o).

If we now consider P(t,iw) in a sultable neighborhood of to then it

follows for j~IC21:j -that:

SH(to, w)P(t, iw) + P*(t, ico)H(to, w)

5 H(to, w)P(to, io) + P*(to, iw)H(to, o) +

+ 21JwcmlH(to, w)(P(to, iw)- P(t, iw))/IlmlI

' H(to, o)P(to, io) + P*(to, iw)H(to, o) + 6limH (to, ) +

+ 21cojm( H(to, o,)(P(t0, iw) - P(t, ic))/Ioml - 1bH(to, o))

12



Since the coefficients of P(t,i) are continuous with respect to

t, it follows that there is a neighborhood-of -t- independent of

w such that

J(to,co)(P(Co,ico)-P(t,io)) ml - 6JH(to,o) g

For this neighborhood there is therefore by (6.4) for all I1w

a constant a', such that

I(to, w)P(t,iw)+P*(t, iw)H(to,w) 5 2a'H(to, w) -6)omH(to,w) (6 . 5)

This shows that the Cauchy problem is locally _prop_ery_posed.

It then follows in the usual fashion that the Cauchy problem

is also globally propeTr Iposed Iince each finite t-interval

(0, T) can be covered by a finite number of neighborhoods of

the above kind by means of the Heine-Borel theorem.

Furthermore note that one can also generalize the estimate

(6.5) to the case in which the coefficients of the differential

operatorvP depend on x also. From this fact one can then

derive "a priori estimates" which lead to existence theorems.

(Regarding this matter cf.,Garding [1] and Mizohata [61).

2) Homogeneous systems of the form dO ndtP,,(daQ/)ur with

constant coefficients for which the eigenvalues ofiP,,(iw)lare pure

imaginaries. We prove the

THEOREM 5. Given a systeml

aulat = P.(aazx)u, P. - Aam(laz, .. a :,w-M (6.6)

with constant coefficients. Then the following .statements hold:

(i) If m = l(mod 2) and if the Cauchy problem is well-Dosed.-

tUhen tie' egehV-ilaes 'c(w)[ of Pm(ia) r~'i~~&ssarily pure imagin-

1aries.

13



(ii) If the N(W)I are pure imaginaries then the Cauchy problem

is well-posed )-if and only if- tere is a c-onstant C 3 1 and to each

w there corresponds a matrix S(w) with

max(SI;IS,1 ) _ _ . (6.7)

so that

ix 0 ...... O

(w)P(i)1 - 0 iX 0 .. (6.8)S(o)P,(i0)S'(o) = o, o.. o
0 .... .. i .,

PROOF. For systems of theform (6.6) we have

P,(i) = Iol,,P(icj/wlo );.l i. e. xj(w) = I1olmxj((0,/1o) .j (6.9)

Moreover if m - l(mod 2) then we also have

:Pm( -i) = -P.,(ic); i. e ., \ (- ,) = -,(W) "i (6.10 )

Thus for m - l(mod 2) the inequality (4.5) is satisfied pre-

cisely when Ae(w)0)=0j . This proves the first statement of the

theorem. The second is proved as follows. By Theorem 3 the

Cauchy problem is obviously we-f-posed __ for the differential

equation (6.6) if (6.7) and (6.8) hold. Conversely if the

Cauchy problem is _well-p_osed 7"3th en by Theorem 3. .there are

matrices S(w ) which satisfy (4.4) so that for all w

SH'(w)P,(iw)84 -() = I~,mS()P,(i0joll )8-11(w)

x' b' *. . . . . . .

" " 0 x ;' b' ... b'

0 ........ (6.11)

Il"lb'tl Osllsal .

14



If we now hold w/Jwlfixed and consider the sequence icl|=l,2,....,1

then we obtain from (6.11) lim'sj O. Since the -(oir8 are uniformly

Sbo\undedwe can choose a subsequence 1olI such that lim (c0)=S()

exists. For the matrices S(w) thus constructed (6 .7) and (6.8)

hold. This proves the second statement of the theorem.

As matrices H we can then choose

H = H(o) =.S*(o)8(co) (6.12)

Then in fact

H(o)P.(ico) + Pm*(ia)H(o)
= S*(0)(S(w)Pm&-1 () + *-()Pm*()l)*(o))S(O) = o ( 6.13)

holds.

Moreover, the matrices H necessarily have the form (6.12).

Indeed we have (of. also 0. Tausky [9.])

LEMMA 1 Corresponding to a square matrix A of order n

there exists a positive definite hermitian matrix H such that

HA+A*H = 0 if and only if the eigenvalues of A are pure imaginaries

and A has a complete system of eigenvectors. For all such

matrices H one then has H = S*Slwhere S is any matrix for which I:

SAS- 1 has diagonal form, i.e., S = T- 1 where the column vectors

of T consist of n linearly independent eigenvectors of A.

PROOF. Let H be any positive definite matrix such that

HA+A* = o. ] (6.14)

Since there is-clearly a non-singular matrix Tlsuch-that---

tt=T,*-'T ,-1,1it follows from (6.14) that

T-.IATz + Tj*ATP,*- = 0. (6 . 15)

15



Thus TI AT1 is antisymmetric. Hence T1 1 AT1 has purely

imaginary eigenvalues and-n linearly -independent eigenvectors. - The

same is therefore also true of A. From (6.15) it then follows

furthermore that there exists a'unitary matrix U such that

UT,-ATU* = T-'AT, T = TU*,

has diagonal form. Hence T is the desired matrix which reduces

A to diagonal "form, and one obtains

i = TT-1-- = T*-T-1.

Conversely if there is a non-singular matrix T such that

T 1AT has diagonal form-then in accordance with (6.13) we obtain /120
the equation (6.14) where H=T*-'T- 1in case the eigenvalues of A are

pure imaginaries. However, this proves the theorem.

If in accordance with -Teorem 3 we now introduce the operator

H defined by (4.10) we obtain

THEOREM 5. If the eigenvalues of Pm(ic)lare pure imaginaries \

then the Cauchy problem for theldifferential equation (6.6) is

well-posed _ if and only if there exists a norm (u, Hu) such that

for all u(z)eil .)

(P(alax)u, H) + (u, HP.(alax)u) = 0,

or otherwise stated, if and only if the operator i1(a/ax)with domain

of definition iV is symmetric Vith, respect: to' the norm (u,Huil.

16



7. REPRESENTATION OF THE OPERATOR H AS THE QUOTIENT OF

-DIEFERENTIAL OPERATORS 4

We shall 4now state cobndt'i -n-s-' ~sch-ht athe bperator H of

the last theorem can be represented as a quotient of differen-

tial operators. This representation is important if one wishes

to consider differential equations whose coefficients

also depend on x. In.,accordance with Petrovskii [8, p. 56] we

introduce the following terminology.

- DEFINITION 2. Given a matrixA(fl)=(a(fl)),Oijn,} whose --

elements on an open set %1,are continuous functions of a real\

parameter f=(81 ... ,fl,)I We say that A(B) has simple structure on

,.kif-for all _' , _A(B)j has the following properties:

1) A has n linearly- independent eigenvectors.

2) The multiplicity of the orbots of the characteristic

equation f(x)= d ideilA-1x=Oj:is independent of 6, i.e. (xi([ cal be

written in the form

=. pI = p + -' 1  
.

I+, v Tr, n (7.1)

where the roots of )9.(iare precisely all the roots of f(x)=90

of multiplicity v.

If in addition one assumes that the aij are r-times contin-

uously differentiable with respect to 8 then the same also follows

for the q . According to Petrovskii [8, p. 57] the e,, are

indeed r-times continuously differentiable since they are

simple roots of\ fd'f(u)/d"'=O0 .

We now prove the decisive

17



.. LEiMIA 2. "Let A(f)=(a(l)), OSi, j<n, be a matrix whose elements

are -continuous _functions_ of a real parameter 8 on an open seti '.

Let A have simple structure on 93land let

Rex = 0.1 (7.2) /121

hold for the eigenvalues 1' of A for all 6E'W. Then for every

i;°)ethere is an>0',and there is defined onitl a positive semi-

definite hermitian matrix H(8) such that for all 8 withlfl-fi')I.e

the matrix H(B) is positive definite and

HA + A*H = 0

Here the elements of H are integral rational functions in the

a1i', iq and q . .

PROOF. We consider any point O .. If the multiplicity

of' an eigenvalue'x'equals n, then-A= and the assertion of the

lemma is obviously correct. Hence we can assume that the multi-

plicity of all eigenvalues is less than n. We now consider all

eigenvalues xx-,l with multipliity v<njand we shall determine the

corresponding eigenvectors. The components xi of these eigen-

vectors are determined by the linear equations

Lk = akxi + akzx2 +... + (akk- x ,,)k + .. + ak , (7.3)
k = 1,...,,

By hypothesis this system of equations has rank n - v, i.e.j,

corresponding to each eigenvalue i there are exactly v linearly

independent eigenvectors. Hence we can choose constants

iA..-n;1=1,2,....n,j such that for pI=flp(the eigenvectors assigned

to any one of the eigenvalues x, are determined by the equations

n

'G I A.Lk= bx +...+ bx,, = 0, 1 = 1,2,... .,n- , (7.4)
S k=1
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The subdeterminants det Ibkrl of order n-v are in fact

integral rational functions in the Xlk , which certainly do not all

vanish identically. -Hence-th'ey -vanish-"simult-aneously only for

special values of the Xlk. Then we obtain the eigenvectors in the

following way. Corresponding t6 the subdeterminant h )=detibkI,

[I15k, r-; J of order n-v we can find v eigenvectors.

him = (hjj, ... , hn_,,h(1),O, ... ,0)',

h2(1) = ( ... ,21 , . ,,O, h()0, ... .,0)'%

with the help of Cramer's rule., Here the h.. are subdeterminants

det Ibkrl of order n-v which have an appropriate sign. These

eigenvectors are linearly independent precisely when h(1)> 0.

Correspondingly we can construcg for each subdeterminant h(i)

det Ibkrl of order n-v, v eigenvectors which are linearly

independent exactly when h(i )  0. Since not all h vanish /122

for every eigenvalue n. ,, we can, -just as above, fix constants

ij such that for ,p=p(O)the v eigenvectors

I i

are 1 iAnearly independent for allo, -.-- Hence we can r eprKent

in the form - - ., , "o--'- -

the linearly independent eigenvectors which for = correspond to

lanyof he\ rv. and v.\ Here the components f( .are integral

rational functions in the a.. an!d the 7  . Furthermore this

representation of the eigenvectolrs holds for allf#-i for which

the vectors (7.5) are linearly iIndependent.

With the help of these eigenvectors we now form the matrix

T,19 (7.6
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Here the x,j range over all eigenvalues of multiplicity v, i.e.,

all roots of the factor (x)'jf (7.1). For

T, T,* = :E I ) = o<,s,

it then follows that the crs are integral rational functions in

the a.., aij.. and the which are furthermore- symmetric

functions with respect to the ex, (Note that =-, by (7.2)).

Hence it follows from the fundamental theorem for symmetric

functions that the.c can"be w±ritten as integral rationalrs
functions in the aij, j and the coefficients q of the factor

(kof (7.2). With the help of! all eigenvectors of A-we now

form the matrix

which is non-singular for jfl=)=J' Here a is the highest

multiplicity of the eigenvalues which occurs. Then for P-O)

as well as for all,e, for which T is non-singular

0... 0

.. ........ (7.8)
0 ...... 0 ,

and the elements of

TT* ' TTi (7.9) /123

are integral rational functions in the a.., a.. and q,4 . The

same is then true also for the coefficients of the hermitian

matrix

H = detlTT*(TT*)-I = (detlT)2T*-T-. (7.10)
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which is positive semi-definitelfor all i3 , and positive

definite at least in one neighborhood of fl=f(O)j. It should be

noted that for Th=fl() , H.is.non s.ingular-and that -the elements of

H are continuous functions of 8 For all fle j for which H is

non-singular we then obtain

A A+A*H = (detTl)2 T*-(T-AT +T*A*T*-1)Ti - 0i (7. 11)

with the aid of (7.2) and (7.8)! However, this proves the lemma.

We next prove an important special case.

LEMMA 2'. In addition to the assumptions of Lemma 2 we

assume that on i\can split up 0 ito 1P1=(fiT'-~l)-i and #fi=)i-I--± ,fl)

so that one can write 9Z=9 )( as -a direct product product ;911(ll)xj

9n(3) , Moreover let the coefficients of the matrix A and the

be analytic functions of 81i fo' each fixed value B. Then there

is for each B1 (OEI(r)I an s>0isuch that for all 8 with i-Ir -B)I E,J

and all iflnueC91(fln) there exists a positive definite matrix H

of the above kind. Here 1ls anlarbitrary compact subset of un(flu )

PROOF. Let l(be fixed in advance. By Lemma 2 there

is for each point :I.=( flh 1 ))(fl)n Ei>0 so that for all with

Sfli/-o <E e and -i fi-i (l<ej such a matrix Hi exists.(7.11) holds

for the matrix Hi not only when I L9-P 0 l<e !IflI-flH )r< 4 ,' but also for

all '#eT, with 4Ifi)- fl <eil. This is the case sinc e for each fixed

value 1 the elements of H.A + A*H. are analytic functions of BII
1 1 (i)

which.vanish in a neighborhood 6f II . Hence they vanish

identically. Then if 1iC9(i):,,_) lis a compact set one can cover it

with a finite number of such neighborhoods nfI-_fuliH<ei e and we ob-

tain the desired matrix in the form H =' 2H..

Now we can prove the following theorem.
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-..--Theorem 6-. Given a system!of differential equations

au/at = Pa,(/'x)u (7.12)

with constant coefficients. Su pose that for the eigenvalues

ofiPm(i)1. ex(w)=. If P (iw) has simple structure on the set /124

Iwl= 1 then there exists a differential operatoriQ(0/ x)1of an order
2N such that

S( 1=1 .) (,Q(a/aX) ! 6 l,1 (7.13)

and

,(P(/ax)u, Q(a/x)u) + (u, Q(al/x)P(a/x)u) 5 63(u, Q(aIx)u)_ (7 14)

for all rue-9)Z. Here the '6i are constants with :

which are independent of u.

PROOF. P(iw) has simple structure on every set 2i

0<aj<1< . This follows directly from the equation

Pm(io) = [olP.(iolol) .1 (7.15)

Therefore, the g are integral rational functions of w. For

the factors g,.(x)[are the common divisor off( )and d'f(.)/dx1

Hence the representation (7.1) lolds in the ring of polynomials
IPlw,..-,wx)ver the field of complex numbers. If we therefore

apply Lemma 2' ,to such a set withfl11=wthen there exists for Iwl= 1
a positive definite hermetian matrix Hl(w) whose elements are
integral rational functions in the w such that

PM*(iw)H1(w) + Hj(w)Pm(iw)= 02

Since( P.(-i=(-C1)P(io)~ we also have

.Pm*(iw)H( -w)+H,(- co)P(iw) = 0.]

Thus if we form the matrix -H2(w)=H (-w)+H( ),1 then there exist
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constants '.a,o jfith 0< aG5 a , such that for I = 1

S5H 2(o a1, (7.16)

P,*(iw)H2(w)+H 2(w)P,(i) ) =0. (7.17)

Moreover the elements of H,(w! are even integral rational functions

in the components of w . We denote by ord H 2 the highest

occurring order' of these functions. We now define H2 for

arbitraryw by means of

H~(w) = IwlH , ( lwl), N =max([(m+ 1)], j ordH2) (7.18)

([xl denotes the largest integer 5x). Then it follows from

(7.15) that (7.17) holds for all w, and from (7.16) that

ax wlVI = H 2(w) 5 a olw ,. (7.19)

Furthermore the elements of H -(-6)>are polynomials in the com- /125

ponents of w. If we now let

H c H, ((w)+ 2I,l
(w)= + (7.20)

then it follows from (7.19) and (7.20) and 2N >m that

q(li o2N+1)I H(w) 5 o2(I+12- )I, (7.21)

P,,,*(iw)H(c) + 1I(w)P (ic) = Ozr(P,,(i) +) P,*(iw)) (7.22)

Spconst. (wlm+l 1) : .const.H(cu)..

Next we understand by Q(iazx)'i the differential operator of order
2N for which Q(i)\= H(w). If one observes that for all lue

v j U/1aX/ +il ,+ J(u1i = f (( ,I' +1) I,(w),i2dCv,

i(1(wI is--the--Fourier transform of u), then it follows from-

(7.21) that, forPg(/Ia)ean inequality (7.13) holds. Furthermore

(7.14) follows just like (4.11).! From this fact the assertion

follows.
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If we now set

then for all e -- - -. --

R(a/ax)u (2;r)-s/2f I12eiW (w) dw =

'If we note that by (7.20)

(Q(a/ax) - I)u = (2n)-/2f H2 (w) eixyp(w) dco ,

then by (7.16) and (7.18) we can define a bounded positive

definite symmetric operator

H R-1(a ax)(Q(aax)-I), for all e L,

by

Hu = fH 2(w) l- 2Neiwxy() do

f H 2(w/wI) eiy(wco) dw

for which by (7.17) for all uec)1

(P(aIax)u, Hu) + (u,HP,,(alax)u) = 0. /126

Therefore in this case one can represent the operator H of

Theorem 3 as the quotient of differential operators.
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8. GENERALIZATION TO SYSTEMS OF FIRST ORDER DIFFERENTIAL

EQUATIONS WHOSE COEFFICIENTS DEPEND ON x AND t.

In this section we wish toiprove the following theorem.

THEOREM 7. Given a systeml of first order differential

equations

auat = A(x,t) u/ax, P1(x,t,a/lax)uv=11

whose,,coeffidients are infiniteiy ,(sufficient~lyi diff6rentiable'

in all variables. We assume that for all real w and all x

and t the matrices P(x:,t,iw) =,,A,(x,ti)iw~ -have--purely imaginary eigen-

values and have simple structure. Then for each point (xo, t o)
there is a neighborhood of U and a formally self-adjoint

differential operator Q(x,t /ax) of even order 2N>O whose

coefficients are infinitely (sufficiently) differentiable such that

for all u(z,t)ejdo( )] the inequalities (7.13) - (7.14) hold if one

replaces Q(ax) by Qt,aax C~(U)j is the class of all

infinitely differentiable functions which vanish outside of a

compact setiEjl.

PROOF. By Lemma 2' and according to the proof of Theorem 6

there is for each point (Xo, t ) a neighborhood U in which there

exists an hermitian matrix .I(x,t,im) corresponding to P(x,t,iw)

whose elements are integral rational functions of the w

with coefficients which are infinitely differentiable with

respect to x and t (Cf. the remark in connection with definition 2)

so that for all .'(x,t) U, the inequalities corresponding to

(7.21) and (7.22) hold. Hence we can construct a formally

self-adjoint differential operator Q(xt,v/aj for, hich.

Q(x,t,iw) = (x,t,w). (8.1)
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Then b5,- (7.2 1 ) for each point(xi,t)_eU ] the inequality (7.13)

holds- for the differential operator ((x,t1, x)] when one replaces

aQ(a ax)I by Q(xj,t,/x) i. According Io Garding [1], (7.13) holds for

appropriate : > 0, f> for- the -di-ff.e-rentia-1:-opera-t-or 11Q(x,t,a2ax)

also, i.e.

.1 6 ia~uiXN1i2 + jUi2) (8.2)
I \r= 1

Ir

if ueCooc(U)I and U is sufficiently small.

If we now consider

(x, = P *(x , t, lax)Q(x,t, -cx) + Q(x,t,txlz)P(zx,t,ax)u 1 (8. 3)

where Pl,(x,t,/2x) is the operator iformally adjoint to P(xt,
then it follows from (8.1) and the equation corresponding to

(7.22) that

SL(x,t,iw) = P l*(x,t,iw)Q(x,t,iw)+ Q(x,t, i)P 1(z,t,iw)f

= a2(P *(x, t,iw) + P i(x, t,' i)) .

Hence the differential operator IL(x,t,/Cx)) is at most of order 2N.

If a is a constant vector then we have

L(x, t, a/ax)aeiz = (L(x, t, iw) + G(x, t, iw))ae<x (8. 4)

where the elements of G(x,t,iw) are polynomials in the w. whose

order is less than or equal to 2N. Hence it follows for all

,UeCo(-U)j by means of integration by parts that

(u, L(xt, a/ x)u) = (L(x, t, a/a)u, L( O, t, )
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where the L. are differential operators of order less than or
1

equal to N. Hence- by (8.2) dnet can estimate -the expression

(u,L(x,t,8/x)u) by means of (u,Q(x,t,a/~x)u)j and obtain

I(P1 (X, t, /X)u, Q(x, t, /X)u) + (u, Q(X, t, 2/x)P1(x,t,aax)u) (8 5)
= (u,L(x,t,alax)u) const2.(u,xt, ax )) (8.5)

But this proves the theorem

In accordance with (4.12) it follows from this theorem

that there is an "a priori" estimate of the local solutions and

thus by means of standard methods (cf. e.g. ,Leray \[5 ) that

there exist global solutions, e.g.-,\for all sufficiently

differentiable initial values.

Thus with the help of the last theorem one can generalize

the results of I. Petrovskii [7]. Indeed Petrovskii requires

that the eigenvalues of P(x,t,a1/z) imust be distinct for all

x,t,w. Then these matrices are certainly of simple structure.
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